MAX PULSE
RESULT INTERPRETATION GUIDE

- PROVE CLINICAL EFFICACY
- IMPROVE CLINICAL OUTCOMES
- IMPROVE PATIENT ADHERENCE
PTG (Plethysmograph) and APG (Accelerated Plethysmograph):

This screen displays the three minute test “average” for the basic and finalized wave forms. Mathematical calculations are then derived from the multiple data points collected (i.e. points a, b, c, d & e) and are represented graphically.
1. **The Heart Rate or Beats per Minute** is displayed using a graph and numerical value that will change during the course of the three minute test.

2. **Plethysmograph (PTG):** The “basic” wave form signal that indicates pulsation of chest wall and great arteries followed by the heart beat. This shows the device picking up the pulse wave from the patients heartbeat through the fingertip in real time.

3. **Accelerated Plethysmograph (APG):** The “final analysis” wave form. The APG measures the blood circulation state and aging level of blood vessels. APG uses the second derivative of the waveform to stabilize the baseline and to separate components of the waveform more clearly and distinctly.

4. **HRV (Heart Rate Variability) Tachogram:** A green linear record displaying the HRV information collected during a three minute period of time (indicated by the pink bar).

5. **HR (Heart Rate) Variability:** A graphical representation of time (yellow dots). The more the dots are dispersed and spread out in a group, the more adaptable the cardiovascular system.
VESSEL STATE, KINETICS OF BLOOD FLOW, ENDOHELIAL DYSFUNCTION

Aging Vascular Health

TYPE-1: 0.0%
TYPE-2: 100.0%
TYPE-3: 0.0%
TYPE-4: 0.0%
TYPE-5: 0.0%
TYPE-6: 0.0%
TYPE-7: 0.0%

WAVEFORM PATTERNS

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

Type 7
DPI - Differential Pulse Wave Index:
Represents the overall health of the cardiovascular system. DPI is the main indicator that represents aging vascular health.

EC - Eccentric Constriction:
Represents the contraction power of vessels from the left ventricle.

AE - Arterial Elasticity:
Analyzes the blood circulation, vascular elasticity and resistance of the vessels. It detects early cardiovascular disease like atherosclerosis and peripheral circulation dysfunction.

RBV - Remaining Blood Volume:
The remaining blood volume in the vessels after systolic contraction on the heart. If the blood vessels are healthy, there is little remaining blood volume. If the vascular state improves, the remaining blood volume will decrease, but will show an increase on the point scale. Please note this inverse relationship.
Sympathetic (SNS) and Parasympathetic (PNS) Measurement: This measure indicates overall balance between sympathetic and parasympathetic systems. It is the ratio between the power of Low Frequency and High Frequency bands. A higher ratio reflects domination of the SNS, while a lower ratio indicates domination of the PNS. This ratio is used to quantify the overall balance between the sympathetic and parasympathetic systems. The balance is indicated on a bar graph with 2 bars, one each for SNS and PNS. Frequency domain measurement confirms that the LF and HF oscillatory components are relative indices of cardiac sympathetic and vagal (parasympathetic) activity respectively.

AUTONOMIC NERVOUS SYSTEM

Sympathetic Nervous System (SNS)
- **Fight or Flight**
- Releases muscle destroying and fat storing hormones
- Cortisol, Adrenaline (noradrenaline)
- Increased heart rate, blood pressure, sweating, blood vessels and pupils dilate, blood flow to the limbs
- Decrease in digestion and sexual function
- Naturally active during the day
- Everyday stress: Traffic, deadlines, kids, family, relationships

Parasympathetic Nervous System (PNS)
- **Rest and Digest**
- Muscle building (anabolic)
- Releases muscle building hormones
- Growth hormone, DHEA, Melatonin, Testosterone, Estrogen
- Repairs the body and responsible for sexual arousal
- Stimulates digestion and elimination
- Naturally active at night (specifically between 10pm and 2am)

EFFECTS OF AUTONOMIC NERVOUS SYSTEM DYSFUNCTION

<table>
<thead>
<tr>
<th>Production of Energy</th>
<th>Blood sugar levels and the ability of your cells to make energy are compromised. Insulin resistance results in excess body fat, diabetes, and heart disease.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep</td>
<td>The rapid eye movement stage (REM) of the sleep cycle is interrupted by high cortisol values at night. Since REM is the most regenerative stage of sleep, fatigue, depression, and lack of mental acuity can result.</td>
</tr>
<tr>
<td>Brain</td>
<td>Damage to neurons and receptors in your brain. This probably accounts for the problems with depression, learning, and memory observed in people who are chronically stressed.</td>
</tr>
<tr>
<td>Muscle & Connective Tissues (Tendons, ligaments & joints)</td>
<td>Reduced tissue repair, coupled with an increased rate of tissue breakdown (a normal part of body metabolism), leads to an increased risk for muscle and joint injury. The lowered rate of repair and increased breakdown prevents normal repair of injuries, even everyday wear-and-tear, and leads to chronic injuries and chronic pain.</td>
</tr>
<tr>
<td>Bone</td>
<td>If the night cortisol is elevated, your bones do not rebuild during sleep and you are more prone to osteoporosis.</td>
</tr>
<tr>
<td>Immune System</td>
<td>Decreased production of white blood cells; decreased immune response in the linings of the lungs, throat, kidneys, bladder, and intestinal tract. Lowered resistance to infection and increased risk for allergies.</td>
</tr>
<tr>
<td>Skin Regeneration</td>
<td>Thin, dry (even crepe-paper-like) skin. Human skin regenerates mostly during the night while you’re asleep. Moist, resilient skin is a sign of healthy cortisol rhythm.</td>
</tr>
<tr>
<td>Thyroid Function</td>
<td>High cortisol levels inhibit thyroid hormone levels and result in fatigue, low body temperature, and weight gain.</td>
</tr>
<tr>
<td>Pituitary Gland</td>
<td>Low pituitary hormone levels inhibit thyroid, male and female, and growth hormone levels.</td>
</tr>
<tr>
<td>Liver</td>
<td>Abnormal cortisol levels stress liver detoxification pathways.</td>
</tr>
</tbody>
</table>
| Intestines | Abnormal cortisol levels weaken the intestinal wall, resulting in ulcers, colitis, Crohn’s Disease, Irritable Bowel Syndrome, and abnormal gut flora.
FREQUENCY DOMAIN ANALYSIS

The frequency-domain graph indicates the strength of the signal within each frequency band over a range of frequencies. The device analyzes specific domain ranges associated with HRV and ANS function:

Total Power (TP) combination of the 3 frequencies

Very Low Frequency (VLF) at 0.0033 and 0.04 Hz

Low Frequency (LF) at 0.04 to 0.15 Hz

High Frequency (HF) at 0.15 to 0.4 Hz

<table>
<thead>
<tr>
<th>HEALTHY</th>
<th>UNHEALTHY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDUCTION OF TP</th>
<th>REDUCTION OF VLF</th>
<th>REDUCTION OF LF</th>
<th>REDUCTION OF HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Decreased ANS function</td>
<td>- Inability to regulate body temperature</td>
<td>- Loss of energy</td>
<td>- Chronic stress</td>
</tr>
<tr>
<td>- Lowered regulation competence</td>
<td>- Hormone disorder</td>
<td>- Fatigue</td>
<td>- Aging</td>
</tr>
<tr>
<td>- Decreased ability to cope with the</td>
<td></td>
<td>- Insufficient sleep</td>
<td>- Reduced electrical stability of heart</td>
</tr>
<tr>
<td>requirement of continuously changing</td>
<td></td>
<td>- Lethargy</td>
<td>- Functional indigestion</td>
</tr>
<tr>
<td>environment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequency Domain Analysis

Total Power (TP): Total Power is a short-term estimate of the total power, of the power spectral density, in the range of frequencies between 0 and .4 Hz. This measure reflects overall autonomic activity where sympathetic activity is the primary contributor, and is calculated in milliseconds squared (ms²). Total Power is a general reading obtained by each of the three specific frequencies above. If it is located within the I-bar or above, it means that the autonomic nervous system is functioning well. If it falls below the I-bar, it means the autonomic nervous system is functioning poorly and that stress resistance is also weak. The clinical meaning of TP in frequency domain is similar to that of HRV.

Very Low Frequency (VLF): Very Low Frequency is a band of power spectrum range between 0.0033 and 0.04 Hz. Generally this frequency range indicates overall activity of various slow mechanisms of sympathetic function. Very Low Frequency band is calculated in milliseconds squared (ms²). With longer time recordings it is considered to represent sympathetic tone as well as slower hormonal and thermoregulatory effects. There are some findings indicating that in shorter recordings VLF has fair representation of various mental stress factors (negative emotions, worries, rumination etc.)

Low Frequency (LF): Low Frequency is a band of power spectrum range between 0.04 and 0.15 Hz. This measure reflects both sympathetic and parasympathetic activity. Generally it is a strong indicator of sympathetic activity. Parasympathetic influence is represented by LF when respiration rate is lower than 7 breaths per minute or when taking a deep breath. Thus, when subject is in the state of relaxation with a slow and even breathing, the LF values can be very high indicating increased parasympathetic activity rather than an increase in sympathetic regulation. Low Frequency band is calculated in milliseconds squared (ms²). LF shows the activity of sympathetic nerve and parasympathetic nerve at the same time, but it mostly indicates the sympathetic nerve system.

High Frequency (HF): High Frequency is a band of power spectrum range between 0.15 and 0.4 Hz. This band reflects parasympathetic (vagal) activity. HF is also known as a ‘respiratory’ band because it corresponds to the beat-to-beat variations caused by respiration. This phenomenon is known as Respiratory Sinus Arrhythmia (RSA). Heart rate increases during inhalation and decreases during exhalation. This band reflects parasympathetic or vagal activity of the ANS, which was confirmed after a large number of studies indicated that total vagal blockade essentially eliminates the HF oscillations and reduces power in the LF range.
CARDIOVASCULAR ASSESSMENT

HEART RATE VARIABILITY (HRV)

Measures the degree of fluctuation in the length of intervals between heart beats. For healthy people, HRV shows a fluctuation in heart rate while unhealthy people have a simple and consistent heart rate.

HRV measures the adaptability of the cardiovascular system and autonomic nervous system, which is composed of the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS). Your SNS plays the role of the accelerator, also known as flight or fight. Your PNS functions as the brake, also known as rest and repair. A healthy person has a balanced autonomic nervous system.

THE MAJOR ENDOCRINE GLANDS ARE:

Adrenal Glands – produce androgens and cortisol; gives your body odor and pubic hair, helps in how we respond to stress; regulates blood pressure and more.

Hypothalamus – produces hormones that regulate body temperature, appetite and weight, mood, sex drive, sleep, and thirst.

Ovaries – female reproductive glands that produce eggs and sex hormones – including estrogen, testosterone and progesterone – which are vital to reproductive organ development, breast development, bone health, pregnancy and fertility.

Pancreas – produces insulin, glucagon and other hormones but primarily responsible for controlling blood sugar levels.

Parathyroid – controls the amount of calcium in our bones and blood.

Pineal Gland – produces melatonin, which is important for sleep cycles.

Pituitary Gland – the “master control gland” makes hormones that control growth, reproduction, lactation, and the activity of other glands.

Testes – male reproductive glands produce sperm and secretes testosterone.

Thymus – active until puberty, produces cells crucial to the immune system that protect the body from threats such as viruses and infections.

Thyroid – produces hormones that control the rate at which the body burns calories and how fast the heart beats.

ARTERIOSCLEROSIS

Arteriosclerosis occurs when the blood vessels that carry oxygen and nutrients from your heart to the rest of your body (arteries) become thick and stiff — sometimes restricting blood flow to your organs and tissues. Healthy arteries are flexible and elastic, but over time, the walls of your arteries can harden.

AUTONOMIC NERVOUS SYSTEM:

- Involuntary responses
- Pathways to the endocrine glands, blood vessels and organs

THE MAJOR ENDOCRINE GLANDS ARE:

<table>
<thead>
<tr>
<th>Gland</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal Glands</td>
<td>Produce androgens and cortisol; helps in stress response, blood pressure, and more.</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>Regulates body temperature, appetite, mood, sex drive, sleep, and thirst.</td>
</tr>
<tr>
<td>Ovaries</td>
<td>Female reproductive glands producing eggs and sex hormones.</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Produces insulin and glucagon. Controls blood sugar levels.</td>
</tr>
<tr>
<td>Parathyroid</td>
<td>Regulates calcium levels in bones and blood.</td>
</tr>
<tr>
<td>Pineal Gland</td>
<td>Produces melatonin, important for sleep cycles.</td>
</tr>
<tr>
<td>Pituitary Gland</td>
<td>Produces hormones for growth, reproduction, lactation, and other glands.</td>
</tr>
<tr>
<td>Testes</td>
<td>Male reproductive glands, produce sperm and testosterone.</td>
</tr>
<tr>
<td>Thymus</td>
<td>Produces immune cells crucial to the immune system.</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Produces hormones controlling metabolic rate and heart rate.</td>
</tr>
</tbody>
</table>
SAMPLE REPORT 1

REPORT

AUTONOMIC BALANCE & ACCELERATED PHOTOPLETHYSMOGRAPH

Name: ____________________ ID: ____________________ Gender / Age: F / 72 Reg. Date: 2015-11-18 14:26

HRV Tachogram

Heart Beat: 74
Highest Heart Beat: 84
Lowest Heart Beat: 68
Artifact: 0

Aging Vascular Health

Power Spectral Density

VLF LF HF

Low Normal High Very High

Physical Stress

Mental Stress

Stress Resistance

Score of your Stress: 50 / 100

Wave Type: TYPE-4

ITEM VALUE SUB-OPTIMAL (Below 30) Normal (30-70) OPTIMAL (Above 70)
DPI 17.86
E C 20.06
A E 27.57
RBV 54.99

TYPE-1: 2.2%
TYPE-2: 11.3%
TYPE-3: 23.7%
TYPE-4: 48.4%
TYPE-5: 15.4%
TYPE-6: 0.6%
TYPE-7: 0.5%
SAMPLE REPORT 2

REPORT
AUTONOMIC BALANCE & ACCELERATED PHOTOPLETHYSMOGRAPH

Name	ID	Gender / Age	Reg. Date
	M / 50	2016-04-12 06:05	

HRV Tachogram

Heart Beat
- 76
- Highest Heart Beat
- 83
- Lowest Heart Beat
- 68
- Artifact
0

Aging Vascular Health

Power Spectral Density

TP VLF LF HF SNS PNS

1 1 1 1

VLF LF HF

Low Normal High Very High

Physical Stress

Mental Stress

Stress Resistance

Score of your Stress
63 / 100

Wave Type
TYPE-2

ITEM	VALUE	SUB-OPTIMAL (Below 30)	Normal (30-70)	OPTIMAL (Above 70)
DPI | 65.65 | | | |
EC | 65.45 | | | |
AE | 58.04 | | | |
RBV | 58.32 | | | |
REPORT

AUTONOMIC BALANCE & ACCELERATED PHOTOPLETHYSMOGRAPH

HRV Tachogram

Heart Beat: 71
Highest Heart Beat: 89
Lowest Heart Beat: 58
Artifact: 1

Power Spectral Density

VLF LF HF

Aging Vascular Health

TYPE-1: 88.1%
TYPE-2: 10.8%
TYPE-3: 1.1%
TYPE-4: 0.0%
TYPE-5: 0.0%
TYPE-6: 0.0%
TYPE-7: 0.0%

Physical Stress

Mental Stress

Stress Resistance

Score of your Stress: 40 / 100

Wave Type: TYPE-1